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Abstract. Deep learning techniques (in particular convolutional neural networks, CNNs) have recently emerged as a promising

approach for statistical downscaling due to their ability to learn spatial features from huge spatio-temporal datasets. However,

existing studies are based on complex models, applied to particular case studies and using simple validation frameworks, which

makes difficult a proper assessment of the (possible) added value offered by these techniques. As a result, these models are

usually seen as black-boxes generating distrust among the climate community, particularly in climate change problems.5

In this paper we undertake a comprehensive assessment of deep learning techniques for continental-scale statistical downscal-

ing, building on the VALUE validation framework. In particular, different CNN models of increasing complexity are applied

for downscaling temperature and precipitation over Europe, comparing them with a few standard benchmark methods from

VALUE (linear and generalized linear models) which have been traditionally used for this purpose. Besides analyzing the ade-

quacy of different components and topologies, we also focus on their extrapolation capability, a critical point for their possible10

application in climate change studies. To do this, we use a warm test period as surrogate of possible future climate conditions.

Our results show that, whilst the added value of CNNs is mostly limited to the reproduction of extremes for temperature,

these techniques do outperform the classic ones for the case of precipitation for most aspects considered. This overall good

performance, together with the fact that they can be suitably applied to large regions (e.g. continents) without worrying about

the spatial features being considered as predictors, can foster the use of statistical approaches in international initiatives such15

as CORDEX.

1 Introduction

The coarse spatial resolution of Global Climate Models (GCMs) is a major limitation for practical applications, since regional

to local climate information is crucial for impact studies in many sectors. In order to bridge this gap, different statistical

downscaling (SD, Maraun and Widmann, 2017) methods have been developed building on empirical relationships established20

between informative large-scale atmospheric variables (predictors) and local/regional variables of interest (predictands). Under

the perfect prognosis approach, these relationships are learned from (daily) data using simultaneous observations for both the

predictors (from a reanalysis) and predictands (historical local or gridded observations), and are subsequently applied to GCM
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simulated predictors (typically seasonal forecasts or multi-decadal climate change projections), to obtain locally downscaled

values (see, e.g., Gutiérrez et al., 2013; Manzanas et al., 2018).25

A number of standard perfect prognosis SD (hereafter just SD) techniques have been developed during the last two decades

building on classic statistical techniques such as analogs or linear and generalized linear regression (see Gutiérrez et al., 2018,

for an overview of methods). Moreover, several intercomparison studies have been conducted to understand their advantages

and limitations taking into account a number of aspects such as temporal structure, extremes, or spatial consistency. In this

regard, VALUE (Maraun et al., 2015) is a particularly relevant initiative which proposed an experimental validation frame-30

work for downscaling methods and conducted a comprehensive intercomparison study over Europe with over 50 contributing

standard techniques (Gutiérrez et al., 2018).

Besides these classical SD methods, a number of machine learning techniques have been also adapted and applied for

downscaling. For instance, the first applications of neural networks date back to the late 90s (Wilby et al., 1998; Schoof and

Pryor, 2001). More recently, other alternative machine learning approaches have been applied, such as support vector machines35

(SVMs, Tripathi et al., 2006), random forests (Pour et al., 2016; He et al., 2016) or genetic programming (Sachindra and Kanae,

2019). There have been also a number of intercomparison studies analyzing classic and machine learning techniques (Wilby

et al., 1998; Chen et al., 2010; Yang et al., 2016; Sachindra et al., 2018), with an overall consensus that no technique clearly

outperforms the others and that limited added value —in terms of performance, interpretability and parsimony— is obtained

with sophisticated machine learning options, particularly in the context of climate change studies.40

In the last decade, machine learning has gained a renewed attention in several fields, boosted by major breakthroughs

obtained with Deep Learning (DL) models (see Schmidhuber, 2015, for an overview). The advantage of DL resides in its

ability to extract high-level feature representations in a hierarchical way due to its (deep) layered-structure. In particular, in

spatiotemporal datasets, convolutional neural networks (CNN) have gained great attention due to its ability to learn spatial

features from data (LeCun and Bengio, 1995). DL models allow to automatically treat high-dimensional problems avoiding45

the use of conventional feature extraction techniques (e.g. Principal Components, PCs), which are commonly used in more

classic approaches (e.g., linear models and traditional fully-connected neural networks). Moreover, new efficient learning

methods (e.g. batch, stochastic, and mini-batch gradient descent), regularization options (e.g. dropout), and computational

frameworks (e.g. TensorFlow; see Wang et al., 2019, for an overview) have popularized the use of DL techniques, allowing

to efficiently learn convolutional neural networks from (big) data avoiding overfitting. Different configurations of CNNs have50

proven successful in a variety of problems in several disciplines, particularly in image recognition (Schmidhuber, 2015). There

are also a number of recent successful applications in climate science, including the detection of extreme weather events (Liu

et al., 2016), the estimation of cyclone’s intensity (Pradhan et al., 2018), the detection of atmospheric rivers (Chapman et al.),

the emulation of model parameterizations (Gentine et al., 2018; Rasp et al., 2018; Larraondo et al., 2019) and full simplified

models (Scher and Messori, 2019). The reader is referred to Reichstein et al. (2019) for a recent overview.55

There have been some attempts to test the application of these techniques for SD, including simple illustrative examples of

super-resolution approaches to recover high-resolution (precipitation) fields from low resolution counterparts with promising

results (Vandal et al., 2017b; Rodrigues et al., 2018). In the context of perfect prognosis SD, deep learning applications have
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applied complex convolutional-based topologies (Vandal et al., 2017a; Pan et al., 2019), autoencoder arquitechtures (Vandal

et al., 2019) and long-short term memory (LSTM) networks (Misra et al., 2018; Miao et al., 2019) over small case study60

areas and using simple validation frameworks, resulting in different conclusions about their performance, as compared to

other standard approaches. Therefore, these complex (out-of-the-shelve in many cases) models are usually seen as black-boxes

generating distrust among the climate community, particularly in climate change problems. Recently, Reichstein et al. (2019)

outlined this problem and encouraged research towards the understanding of deep neural networks in climate science.

In this study we aim to shed light on this problem and perform a comprehensive evaluation of deep SD models of increas-65

ing complexity, assessing the particular role of the different elements conforming the deep neural network architecture (e.g.,

convolutional and fully-connected or dense layers). In particular, we use the VALUE validation framework over a continental

region (Europe) and compare deep SD methods with a few standard benchmark methods best performing in the VALUE inter-

comparison (Gutiérrez et al., 2018). Besides this, we also focus on the extrapolation capability of the different methods, which

is fundamental for climate change studies. Overall, our results show that simple deep CNNs outperform standard methods70

(particularly for precipitation) in most of the aspects analyzed.

The R code needed to fully replicate the experiments and results shown in this paper are freely available at GitHub (DOI:

10.5281/zenodo.3462428), together with a Jupyter notebook illustrating the use of the deep neural networks considered for

climate downscaling in this work is also provided for interactive computing purposes (see the code availability section at the

end).75

2 Experimental Intercomparison Framework

2.1 Area of Study and Data

The VALUE COST Action (2012-2015) developed a framework to validate and intercompare downscaling techniques over

Europe, focusing on different aspects such temporal and spatial structure and extremes (Maraun et al., 2015). The exper-

imental framework for the first experiment (downscaling with ‘perfect’ reanalysis predictors) is publicly available at http:80

//www.value-cost.eu/validation as well as the intercomparison results for over 50 different standard downscaling methods

(Gutiérrez et al., 2018). Therefore, VALUE offers a unique opportunity for a rigorous and comprehensive intercomparison of

different deep learning topologies for downscaling.

In particular, VALUE propose the use of twenty standard predictors from the ERA-Interim reanalysis, selected over a Eu-

ropean domain (ranging from 36◦ to 72◦ in latitude and from −10◦ to 32◦ in longitude, with a 2◦ resolution) for the 30-year85

period 1979-2008. This predictor set is formed by five large-scale thermodynamic variables (geopotential height, zonal and

meridional wind, temperature, and specific humidity) at four different vertical levels (1000,850,700 and 500 hPa) each. Daily

standardized predictor values for the benchmarking linear and generalized linear techniques (see Section 2.3) are defined con-

sidering the closest ERA-Interim gridboxes to each E-OBS gridbox. However, the entire domain is used for the deep learning

models, which allows to test their suitability to automatically handle high-dimensional input data, extracting relevant spatial90
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features (note that this is particularly important for continental wide applications). The left column of Figure 1 shows the

climatology (and the grid) of two illustrative predictors used in this study.

The target predictands considered in this work are surface (daily) mean temperature and accumulated precipitation. Instead

of the 86 representative local stations used in VALUE, we used the observational gridded dataset from E-OBS v14 (0.5◦

resolution). Note that this extended experiment allows for a better comparative with dynamical downscaling experiments95

carried out under the CORDEX initiative (Gutowski Jr. et al., 2016). The right column of Figure 1 shows the climatology of

the two target predictands, temperature and precipitation.
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Figure 1. Climatology for (left) two typical predictors (air temperature, T, and specific humidity, Q, at 1000 mb), as given by the ERA-Interim

reanalysis (2◦) and (right), the observed target variables of this work, temperature and precipitation from E-OBS (0.5◦). Dots indicate the

center of each gridbox.

2.2 Evaluation Indices and Cross-Validation

The validation of downscaling methods is a multi-faceted problem with different aspects involved such as the representation

of extremes (Hertig et al., 2019) or the temporal (Maraun et al., 2019) and spatial (Widmann et al., 2019) structure. VALUE100

developed a comprehensive list of indices and measures (available at the VALUE Validation Portal: http://www.value-cost.eu/

validationportal) which allows to properly evaluate most of these aspects. Moreover, an implementation of these indices in an

R package (VALUE, https://github.com/SantanderMetGroup/VALUE) is available for research reproducibility. In this work we

consider the subset of VALUE metrics shown in Table 1 to assess the performance of the downscaling methods to reproduce
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the observations. Note that different metrics are considered for temperature and precipitation. The bias measures the average105

forecast error. For temperature, biases are given as absolute differences (in ◦C), whereas for precipitation they are expressed as

relative differences with respect to the observed value (in %). Note that, beyond the bias in the mean, we also assess the bias in

extreme percentiles, in particular the percentile 2 (P2, for temperature) and the 98 (P98, for both temperature and precipitation).

We also consider the Root Mean Squared Error (RMSE), which measures the average magnitude of the forecast errors, weighted

according to the square of the error; in the case of precipitation, this metric is applied only for observation-prediction pairs110

for which the observed vale corresponded to a rainy (rainfall > 1 mm) day. To evaluate how close the predictions follow

the observations, we also assess correlation, in particular the Pearson coefficient for temperature and the Spearman rank one

(adequate for non-gaussian variables) for precipitation; for the particular case of temperature, the seasonal cycle is removed

from both observations and predictions in order to avoid its effect on the correlation. This is done by applying a 31-day width

moving window centered on each day in the time-series. For this variable we also consider the ratio of standard deviations, i.e.,115

that of the predictions divided by that of the observations. Finally, to evaluate how well the probabilistic predictions of rain

occurrence discriminate the binary event rain/no rain, we consider the ROC Skill Score (ROCSS) (see, e.g. Manzanas et al.,

2014), which is based on the area under the ROC curve (see Kharin and Zwiers, 2003, for details).

Description Variable Units

Bias (for the mean) temp., precip. ◦C , %

Bias (for percentile 2) temp. ◦C

Bias (for percentile 98) temp., precip. ◦C , %

Root Mean Square Error temp., precip. ◦C,mm/day

Ratio of standard deviations temp. -

Pearson correlation temp. -

Spearman correlation precip. -

ROC Skill Score precip. -

Table 1. Subset of VALUE metrics used in this study to validate the different downscaling methods considered (see Table 2). The symbol ‘-’

denotes adimensionality. For temperature and precipitation the biases are absolute (adimensional), respectively.

The VALUE framework builds on a cross-validation approach in which the 30-year period of study (1979-2008) is chrono-

logically split into five consecutive folds. We are particularly interested in analyzing the out-of-sample extrapolation capabil-120

ities of the deep SD models. Therefore, following the recommendations of Riley (2019, “the question you want to answer

should affect the way you split your data”), we focus on the last fold, for which warmer conditions have been observed.

Therefore, in this work we apply a simplified hold-out approach using for validation the period 2003-2008, and training the

models using the remaining years (1979-2002). Figure 2 shows the climatology of the train period for both temperature and

precipitation (top and bottom panel, respectively), as well as the mean differences between the test and the train periods (taken125

the latter as reference). For temperature, warmer conditions are observed in the test period —over 0.7◦ for both mean values
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and extremes,— being especially significant for the 2nd percentile (cold days), for which temperatures increase up to 2◦ in

northern Europe, compared with the training period. This allows us to estimate the extrapolation capabilities of the different

methods, which is particularly relevant for climate change studies.
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Figure 2. Top panel, top row: E-OBS climatology for the mean value, the P02 and the P98 of temperature in the train period (1979-2002).

Top panel, bottom row: Mean difference between the test and train periods (the latter taken as reference) for the different quantities shown in

the top row. Bottom panel: As the top panel, but for precipitation. In this case, the mean value, the frequency of rainy days and the P98 are

shown. In all cases, the numbers within the panels indicate the spatial mean values.

Importantly, note that the differences between the test and train periods in Figure 2 reveal some inconsistencies in the dataset130

for both temperature (Southern Iberia and Alps) and precipitation (Northeastern Iberia and the Baltic states). This may be an

artifact due to changes or interruptions in the national station networks used to construct E-OBS and may not correspond to a

real change in the dataset. This will be taken into account when analyzing the results in Section 4.
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2.3 Classic Benchmark Models

We use as benchmark some state-of-the-art standard techniques which ranked among the top in the VALUE intercomparisson135

experiment. In particular, multiple linear and generalized linear regression models (hereafter referred to as GLM) exhibited

good overall performance for temperature and precipitation, respectively (Gutiérrez et al., 2018). Here, we consider the version

of these methods described in Bedia et al. (2019) which use the predictor values in the four gridboxes closest to the target

location. This choice is a good compromise between feeding the model with full spatial information (all gridboxes, which is

problematic due to the resulting high-dimensionality) and insufficient spatial representation when considering a single gridbox.140

For the sake of completeness we also illustrate the results obtained with a single gridbox, in order to provide an estimate of the

added value of extending the spatial information considered for the different variables. These benchmark models are denoted

GLM1 and GLM4 for one and four gridboxes, respectively (first two rows in Table 2).

In the case of temperature a single multiple regression model (i.e. GLM with Gaussian family) is used, whereas for precipita-

tion two different GLMs are applied, one for the occurrence (precipitation > 1mm) and one for the amount of precipitation,145

using binomial and Gamma families with logarithmic link, respectively (see, e.g., Manzanas et al., 2015). In this case, the

values from the two models are multiplied to obtain the final prediction or precipitation, although occurrence and amount are

also evaluated separately.

Model Architecture Rationale

GLM1 20-1 (× 3258) Simplest linear local model for benchmarking

GLM4 80-1 (× 3258) Increasing the predictor’s spatial domain

CNN-LM 20-50-25-1-3258 Using convolutions to automatically obtain meaningful spatial predictors

CNN1 20-50-25-1-3258 Testing the added value of CNN non-linearity

CNN10 20-50-25-10-3258 Increasing the complexity of last CNN features layer

CNN-PR 20-10-25-50-3258 Using standard topologies from pattern recognition

CNNdense 20-50-25-10-50-50-3258 Using complex dense CNN models

Table 2. Description of the deep learning architectures intercompared in this study, together with the two benchmark methods: GLM1

and GLM4 (these models are trained separately for each of the 3258 land-only gridboxes in E-OBS). Convolutional layers are indicated

with boldfaced numbers. The numbers indicating the architecture correspond to the number of neurons in the different layers (in bold for

convolutional layers).

3 Deep Neural Networks

Despite the success of deep learning in many fields, these models are still seen as black boxes generating distrust among150

the climate community, particularly in climate change problems, as their extrapolation capability has not been assessed yet.

Recently, Reichstein et al. (2019) outlined this problem and encouraged research towards the understanding of deep neural
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Figure 3. Scheme of the convoloutional neural network architecture used in this work to downscale European (E-OBS 0.5◦ grid) precipitation

based on five coarse (2◦) large-scale standard predictors (at four pressure levels). The network includes a first block of three convolutional

layers with 50, 25 and 10 (3× 3×#inputs) kernels, respectively, followed by two fully-connected (dense) layers with 50 neurons each.

The output is modeled through a mixed binomial-lognormal distribution and the corresponding parameters are estimated by the network,

obtaining precipitation as a final product, either deterministically (the expected value), or stochastically (generating a random value from the

predicted distribution). The output layer is activated linearly except for the neurons associated to the parameter p which present sigmoidal

activation functions.

networks in climate science. In this study we aim to shed light on the particular role of the different elements conforming the

deep neural network architecture (e.g., convolutional and fully-connected or dense layers). To do this, we build and evaluate

deep SD models of increasing complexity, starting with a simple benchmark linear model (GLM) and adding additional “deep”155

components, in particular convolution and dense layers, as shown schematically in Figure 3.

The basic neural network topology relies on feed-forward networks composed of several layers of non-linear neurons which

are fully-connected between consecutive layers, from the input to the output (these are commonly referred to as “dense”

networks; see Figure 3). Each of these connections is characterized by a weight which is learnt from data (e.g. the two layers of

50 neurons each in Figure 3 result in a total of 50× 50 internal weights, besides the input and output connections). Differently160

to standard dense networks (whose input is directly the raw predictor data), convolutional networks generate data-driven spatial

features to feed the dense network. These layers convolute the raw gridded predictors using 3D kernels (variable, latitude and

longitude), considering a neighbourhood of the corresponding gridbox (3×3 in this work) in the previous layer (see Figure 3).

Instead of fully-connecting the subsequent layers, kernel weights are shared across regions, resulting into a drastically reduction

in the degrees of freedom of the network. Due to these convolutional operations, layers consists on filter maps, which can be165

interpreted as the spatial representation of the feature learned by the kernel. This is crucial when working with datasets with

an underlying spatial structure. To maximize the performance of convolutional topologies, it is necessary to select an adequate
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number of layers, filter maps and kernel’s size, which has been done here following an empirical screening procedure (not

shown). Besides the different deep learning architectures, we also analyze the effect of basic elements such as the activation

function or the layer configuration.170

All the deep models used in this work have been trained using daily data for both predictors and predictand. For temperature,

they estimate the mean of a gaussian distribution by minimizing the mean squared error. For precipitation, due to its mixed

discrete-continuous nature, the network optimizes the negative log-likelihood of a Bernouilli-Gamma distribution following

the approach previously introduced by Cannon (2008). In particular, the network estimates the parameter p (i.e., probability of

rain) of the Bernouilli distribution for rain occurrence, and the parameters α (shape) and β (scale) of the Gamma rain amount175

model, as illustrated in the output layer of Figure 3. The final rainfall for a given day i, ri, is then be inferred as the expected

value of a gamma distribution, given by ri = αi ∗βi.

The first two methods analyzed in this work are the two benchmark GLM models (i.e. multiple linear regression for tem-

perature and Bernoulli + Gamma GLM for precipitation) considering local predictors at the nearest (4 nearest) neighbouring

gridboxes. They are labelled as GLM1 (GLM4) in Table 2. Selecting information only from the local gridboxes could be180

a limitation for the methods and, therefore, some GLM applications consider spatial features as predictors instead, such as

Principal Components from the Empirical Orthogonal Functions (EOFs) (Gutiérrez et al., 2018). Convolutional networks are

automatic feature extraction techniques which learn spatial features of increasing complexity from data in a hierarchical way,

due to its (deep) layered-structure (LeCun and Bengio, 1995). Therefore, as third model we test the potential of convolutional

layers for spatial feature extraction by considering a linear convolutional neural network with three layers (with 50, 25 and 1185

features each) and linear activation functions (CNN-LM in Table 2). The benefits of non-linearity are tested considering the

same convolutional network CNN-LM, but with non-linear (ReLu) activation functions in the hidden layers, making the model

non-linear (CNN1 in Table 2). Moreover, the role of the number of convolutional features in the final layer is tested considering

a non-linear convolutional model, but with 10 feature maps (coded as CNN10). Note that the previous models are built using a

decreasing number of features in the subsequent convolutional layers. However, the approach usually used in computer vision190

for pattern recognition tasks is the contrary (i.e. the number of convolutional maps increases along the network). Therefore, we

also tested this type of architecture considering a convolutional neural network with an increasing number of maps, (10, 25 and

50, labelled as CNN-PR). Finally, a general deep neural network is formed by including a dense (feed-forward) network as an

additional block taking input from the convolutional layer (see Figure 3). This is the typical topology considered in practical

applications, which combines both feature extraction and non-linear modeling capabilities (denoted as CNNdense in Table 2).195

All deep learning models listed in Table 2 have been tested with and without padding (padding maintains the original

resolution of the predictors throughout the convolutional layers, avoiding the loss of information that may occur near the

borders of the domain), keeping in each case the best results for the final intercomparison. Padding was found to be useful only

when the amount of feature maps in the last layer was small, so padding is only used for CNN1 model.
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4 Results200

In this section we intercompare and discuss the performance of the different models shown in Table 2 for temperature (Section

4.1) and precipitation (Section 4.2).

4.1 Temperature

Figure 4 shows the validation results obtained for temperature in terms of the different metrics explained in Section 2.2. Each

panel contains 7 boxplots, one for each of the methods considered (Table 2), representing the spread of the results along the205

entire E-OBS grid. In particular, the gray boxes corresponds to the 25-75 percentile range, whereas the whiskers cover the

10-90 percentage range. The horizontal red line plots the median value obtained from the GLM4 method, which is considered

as benchmark.

In general, all methods provide quite satisfactory results, with low biases and RMSE (panels a, c, e and f), a realistic variabil-

ity (d) and very high correlation values (after removing the annual cycle from the series). Among the classic linear methods,210

GLM4 clearly outperforms GLM1, which highlights the fact that including predictor information representative of a wider

area around the target point helps to better describe the synoptic features determining the local temperature. However, most

of the this local variability seems to be explained by linear predictor-predictand relationships, as both GLM4 and CNN-LM

provide similar results to more sophisticated neural networks which account for non-linearity (regardless of their architecture).

Nevertheless, the biases provided by CNN1, CNN10, CNN-PR and CNNdense for P02 and P98 are lower than those obtained215

from the GLM1, GLM4 and CNN-LM (e, f), which suggests that non-linearity add some value for the prediction of extremes.

Besides, CNN10 (identified with a darker gray) provides the lowest RMSE and the highest correlations, being overall the best

method.

For a better spatial interpretation of these results, Figure 5 shows maps for each metric (in columns) for GLM1, GLM4

and CNN10 (in rows), representing the two initial benchmarking methods and the best-performing alternative found. It is220

important to highlight that the three methods present very little (mean) biases along the entire continent, which suggests their

good extrapolation capability, and therefore, their potential suitability for climate change studies (recall that the anomalously

warm test period that has been selected for this work may serve as a surrogate of the warmer conditions that are expected due

to climate change).

Due to its strong local dependency, GLM1 leads to patchy (discontinuous) spatial patterns, something which is solved by225

GLM4 —including local predictor information representative of a wider area around the target point provides smother, contin-

uous patterns.— Beyond this particular aspect, the improvement of GLM4 over GLM1 is evident for RMSE and correlation,

and to a lesser extent also for the bias in P98. However, the best results are found for the CNN10 method, which improves all

the validation metrics considered, and in particular, the bias for P2.

As already pointed out in Section 2.1, note that the anomalous results found for Southern Iberia could likely be related to230

issues in the E-OBS dataset.
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Figure 4. Validation results obtained for temperature. Each panel (corresponding to a particular metric) contains 7 boxplots, one for each

of the methods tested, which represents the spread of the results along the entire E-OBS grid (the gray boxes corresponds to the 25-75

percentile range, whereas the whiskers cover the 10-90 percentage range). The horizontal red line plots the median value obtained from the

GLM4 method, which is considered as benchmark, whereas the gray one indicates the ‘perfect’ value for each metric. The dark shaded box

indicates the best performing method (CNN10 in this case).
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benchmarking versions of GLM (top and middle row) and the best-performing method, the CNN10 (bottom row). The numbers within the

panels show the spatial mean absolute values (to avoid error compensation).

4.2 Precipitation

Figure 6 is similar to Figure 4, but for the case of precipitation (note that the validation metrics considered for this variable

differ). Similarly to the case of temperature, GLM4 performs notably better than GLM1, in particular for the ROCSS (panel

a), the RMSE (b), and the correlation (c). Nevertheless, with the exception of CNN-LM and CNN-PR, convolutional networks235

yield in general better results than GLM4. Differently to the case of temperature, this indicates that accounting for non-

linear predictor-predictand relationships is key to better describe precipitation, especially in terms of ROCSS and correlation.

Moreover, the standard architecture for pattern recognition (CNN-PR), is not suitable for this prediction problem. In terms of

errors (RMSE and the different biases considered), all convolutional networks perform similarly, exhibiting very little, centered

around zero biases for the mean. With respect to the P98, the slight underestimation shown by deterministic configurations (e)240

can be solved by stochastically sampling from the predicted Gamma distribution (f), but at the cost of losing part of the temporal

and spatial correlation achieved by deterministic set-ups (not shown). Note that, as usual, the correlations found for all methods

are much lower than those obtained for temperature, with the CNN-LM method yielding similar values to those obtained with

GLM4. This suggests that choosing the 4 nearest gridboxes as predictors allows to capture the key spatial features that affect

the downscaling of precipitation with linear models (at least over Europe). Differently to the case of temperature, note also that245

there is not a significant change in the climatological mean between the train and test periods for precipitation (see Figure 2),
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so the particular train/test partition considered in this work does not allow to carry out a proper assessment of the extrapolation

capability of the different methods.

Overall, the best results are obtained for the CNN1 (marked with a darker gray) and CNNdense, which differ from CNN10

in the amount of neurons placed in the last layer. This suggests that whilst 1 feature map was a little restrictive for the case of250

temperature, 10 maps oversized the network for precipitation, worsening its generalization capability for this variable.

Figure 7 is the equivalent to Figure 5 but for precipitation. Again, the best-performing method (CNN1 in this case; bottom

row) is shown, together with the two benchmarking versions of GLM (top and middle rows). In all cases, the deterministic

implementation is considered. As for temperature, GLM4 provides better results than GLM1 for all metrics, being the spatial

pattern of improvement rather uniform in all cases. Likewise, CNN1 outperforms GLM4 for all metrics and regions, especially255

over Central and Northern Europe. These results suggest the suitability of convolutional neural networks to downscale precipi-

tation, which may be a consequence of their ability to automatically extract the important spatial features determining the local

climate, as well as to efficiently model the non-linearity established between local precipitation and the large-scale atmospheric

circulation.

Finally, notice that the anomalous results found over north-eastern Iberia and the Baltic states might be due to issues in the260

E-OBS dataset. Nonetheless, particularly bad results are also found over the Greek peninsula (especially for the mean bias),

for which we do not envisage a clear explanation.

5 Conclusions

Deep learning techniques have gained increasing attention due to the promising results obtained in various disciplines. In

particular, convolutional neural networks (CNN) have recently emerged as a promising approach for statistical downscaling265

in climate due to their ability to learn spatial features from huge spatio-temporal datasets, which would allow for an efficient

application of statistical downscaling to large domains (e.g. continents). Within this context, there have been a number of

intercomparison studies analyzing classic and machine learning (including CNN) techniques. However, these studies are based

on different case studies and use different validation frameworks, which makes difficult a proper assessment of the (possible)

added value offered by CNNs and, in some cases, offer contradictory results (e.g. Vandal et al., 2019; Sachindra et al., 2018).270

In this paper we build on a comprehensive framework for validating statistical downscaling techniques (the VALUE valida-

tion framework) and evaluate the performance of different CNN models of increasing complexity for downscaling temperature

and precipitation over Europe, comparing them with a few standard benchmark methods from VALUE (linear and generalized

linear models). Besides analyzing the adequacy of different network architectures, we also focus on their extrapolation capabil-

ity, a critical point for their possible application in climate change studies, and use a warm test period as surrogate of possible275

future climate conditions.

Regarding the classic (generalized) linear methods, our results show that using predictor data in several gridboxes helps to

better describe the synoptic features determining the local climate, yielding thus better predictions both for temperature and

precipitation. Besides, for the case of temperature, we find that the added value of non-linear CNNs (regardless of the architec-
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Figure 6. As Figure 4, but for precipitation.

ture considered) is limited to the reproduction of extremes, as most of the local variability of this variable is well captured with280

classic linear methods. Moreover, for precipitation, CNNs yield in general better results than standard generalized linear meth-

ods, which may reflect the ability of these techniques to automatically extract the important spatial features determining the
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local climate, as well as to efficiently model the non-linearity established between this variable and the large-scale atmospheric

circulation.

Note that the overall good results found for the CNNs tested here, together with the fact that they can be suitably applied285

to large domains without worrying for the spatial features being considered as predictors, can foster the use of statistical

approaches in the framework of international initiatives for downscaling such as CORDEX, which has traditionally relied on

dynamical simulations to-date.

Code availability. For the purpose of research transparency, we provide the full code needed to reproduce the experiments presented in this

paper, which can be found in the Santander Meteorology Group GitHub (https://github.com/SantanderMetGroup/DeepDownscaling) and in290

Zenodo (Baño Medina et al., 2019). The code builds on the open-source climate4R (Iturbide et al., 2019) and keras (Chollet et al.,

2015) R frameworks, for the benchmark and the CNN models, respectively. The former is an open R framework for climate data access,

processing (e.g. collocation, binding, and subsetting), visualization, and downscaling, allowing for a straightforward application of wide

range of downscaling methods (Bedia et al., 2019). The latter is a popular R framework for deep learning which builds on TensorFlow.

Moreover, the validation of the methods has been carried out with the package R_VALUE and its climate4R wrapper climate4R.value295

(https://github.com/SantanderMetGroup/climate4R.value), which enables a direct application of the VALUE validation metrics.
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